Olympus' Revolutionary V-System Stent Placement Device
Enhances Bile Drainage

The Innovative V-System Design Lets You Proceed with Confidence and Efficiency

The V-System is a complete system that integrates Olympus endoscopes and EndoTherapy devices. The revolutionary V-System design offers the option of guidewire manipulation by the physician or the assistant, allows easier exchange of catheters, and enhances cannulation capability.

V-Marking

Indicates when to raise and lower the V-Groove forceps elevator.

The exclusive V-Marking is located on the proximal side of the sheath. When this marking reaches the channel port on the scope's control section, it indicates that the device tip has reached the distal end of the scope and the V-Groove forceps elevator may be lowered. When withdrawing the device from the scope, the same marking indicates when to raise the elevator to lock the guidewire.

V-System device replacement procedure

1. Confirm the position of the V-Marking on the V-System EndoTherapy accessory.
2. When the V-Marking is completely visible above the instrument channel port, lift the forceps elevator to lock the guidewire.
3. The guidewire is now locked into the V-Groove.
4. Completely remove the device.
Unique stent placement device design also available in preloaded models

Olympus’ Revolutionary V-System Stent Placement Device Enhances Bile Drainage

The Combination of the Pre-loaded Feature and the Comprehensive Line of Innovative Stent Designs Ensure Quick, Efficient and Effective Biliary Drainage

Exclusive combination of materials optimizes passage through a strictured bile duct

Olympus Double-layer biliary stents feature a unique Double-layer construction to optimize performance. The material used in the inner layer features superior non-repellent properties that minimize bile adhesion and accumulation on the inner surface, while the more rigid material in the outer layer provides the stiffness necessary to facilitate smooth insertion. This unique design allows the stent to pass easily through a strictured bile duct.

Features

- Unique, double-layer construction with a different material in each layer. The inner layer uses a specially processed fluorinated material that forms the inner surface five times smoother than that of conventional plastic stents. The outer layer is made of polyamide elastomer to provide the stiffness and elasticity needed to ensure easy passage through a stricture.
- No flap hole at the side holes. The Double-layer design eliminates these holes to reduce bile accumulation in the stent lumen.
- Two flaps at both the distal and duodenal ends ensure secure placement in the bile duct and increase contrast in fluoroscopic images to facilitate position confirmation during stent placement.
- No flap holes or side holes. The Double-layer design eliminates these holes to reduce bile accumulation in the stent lumen.
- Four flaps at both the distal and duodenal ends ensure secure placement in the bile duct and increase contrast in fluoroscopic images to facilitate position confirmation during stent placement.
- Two types available: duodenal and center bend types. Double-layer stents are available in 50/70/90/120/150mm lengths for both the duodenal and center bend types (length between flaps).
- In addition, 30/40/60/80/100/110/130/140mm lengths are also available as single items.

Olympus polyethylene stents provide the perfect combination of flexibility and stiffness

Olympus polyethylene stents offer just the right combination of flexibility and stiffness. The tapered design of the distal and facțiune surface into the bile duct. The flaps and side holes are designed to decrease instability by helping to prevent the stents from moving or dislodging in the bile duct.

Features

- Olympus polyethylene stents are designed with a shorter proximal end to minimize risk of damage to the duodenal wall.
- Olympus polyethylene stents feature a unique Double-layer construction to optimize performance. The material used in the inner layer features superior non-repellent properties that minimize bile adhesion and accumulation on the inner surface, while the more rigid material in the outer layer provides the stiffness necessary to facilitate smooth insertion. This unique design allows the stent to pass easily through a strictured bile duct.

Olympus polyethylene stents are designed with a shorter proximal end to minimize risk of damage to the duodenal wall.

Comparison of clogging substance accumulation

(Electronic Microscope 5000X)

Comparison of inner surface

(Atomic Force Microscope 7500000X)

Available in a length of 2,090mm, the QuickPlaceV does exactly what its name suggests — it enables quick placement of stents. The QuickPlaceV is especially designed to facilitate the smooth passage of the stent through the bile duct, providing a smooth,atraumatic surface that prevents the stent from moving or dislodging.

The QuickPlaceV is especially designed to facilitate the smooth passage of the stent through the bile duct, providing a smooth,atraumatic surface that prevents the stent from moving or dislodging.

Conventional Plastic Stent

DoubleLayer Stent

Conventional Plastic Stent

DoubleLayer Stent

DoubleLayer Stent

Conventional Plastic Stent

DoubleLayer Stent

DoubleLayer Stent

Conventional Plastic Stent

Olympus polyethylene stents are available in diameters of 7 Fr., 8.5Fr., and 10 Fr.

Stents are available in diameters of 7 Fr., 8.5Fr., and 10 Fr.

Olympus polyethylene stents are available in diameters of 7 Fr., 8.5Fr., and 10 Fr.